

DPP No. 4

Total Marks : 30

Max. Time : 31 min.

Topics : Fundamentals of Mathematics, Quadratic Equation, Function

Type of Questions			, Min.
Single choice Objective (no negative marking) Q. 1, 2, 3, 4	(3 marks, 3 min.)	[12,	12]
Short Subjective Questions (no negative marking) Q. 5, 6	(3 marks, 3 min.)	[6,	6]
Subjective Questions (no negative marking) Q. 7	(4 marks, 5 min.)	[4,	5]
Match the Following (no negative marking) Q.8	(8 marks, 8 min.)	[8,	8]

1. The graph of y = f(x) is given below

(D) none of these

Get More Learning Materials Here : 🗾

2. If (x - a) (x - 5) + 2 = 0 has only integral roots where $a \in I$, then value of 'a' can be :

3. If $x^2 - (a - 3)x + a = 0$ has at least one positive root then

 (A) $a \in (-\infty, 0) \cup [7, 9]$ (B) $a \in (-\infty, -1) \cup [7, \infty)$

 (C) $a \in (-\infty, 0) \cup [9, \infty)$ (D) none of these

4. If $\log_4(x + 2y) + \log_4(x - 2y) = 1$, then the minimum value of |x| - y is

- (A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) $\sqrt{4}$ (D) $\sqrt{5}$
- 5. For what values of a does the equation $2 \log_3^2 x |\log_3 x| + a = 0$ possess four solutions ?

6. If \sqrt{ab} is irrational then prove that $\sqrt{a} + \sqrt{b}$ irrational.(where $a > 0, b > 0, a, b \in Q$)

- 7. Prove that, [x] + [5x] + [10x] + [20x] = 36 k + 35, $k \in I$ does not have any real solution. Here [.] denotes greatest integer function.
- 8. Match the column

Column – I		Colur	Column – II	
(A)	Number of roots of the equation sin x = $\ell n x$	(p)	1	
(B)	Number of integral solution of the inequality $ x-2 -3 \le 0$	(q)	2	
(C)	Number of distinct real roots of the equation $x^3 - 3x + 2 = 0$	(r)	3	
(D)	Absolute value of the sum of the coefficients of the quotient when $x^5 - 4x^2 + 2x + 1$ is divided by $(x - 1)$	(s)	4	

Get More Learning Materials Here :

Answers Key

1. (C) **2.** (A) **3.** (C) **4.** (B)

5. for all
$$x \in (0, 1/8)$$

8.
$$(A \rightarrow p)$$
, $(B \rightarrow q)$, $(C \rightarrow q)$, $(D \rightarrow p)$

Get More Learning Materials Here : 💻

